Claire Johnson, Author at Raspberry Pi Foundation https://www.raspberrypi.org/blog/author/clairejohnson/ Teach, learn and make with Raspberry Pi Wed, 23 Apr 2025 06:54:30 +0000 en-GB hourly 1 https://wordpress.org/?v=6.8.1 https://www.raspberrypi.org/app/uploads/2020/06/cropped-raspberrry_pi_logo-100x100.png Claire Johnson, Author at Raspberry Pi Foundation https://www.raspberrypi.org/blog/author/clairejohnson/ 32 32 Research insights to help learners develop data awareness https://www.raspberrypi.org/blog/research-insights-to-help-learners-develop-data-awareness/ https://www.raspberrypi.org/blog/research-insights-to-help-learners-develop-data-awareness/#respond Thu, 17 Apr 2025 09:22:47 +0000 https://www.raspberrypi.org/?p=89892 An increasing number of frameworks describe the possible contents of a K–12 artificial intelligence (AI) curriculum and suggest possible learning activities (for example, see the UNESCO competency framework for students, 2024). In our March seminar, Lukas Höper and Carsten Schulte from the Department of Computing Education at Paderborn University in Germany shared with us a…

The post Research insights to help learners develop data awareness appeared first on Raspberry Pi Foundation.

]]>
An increasing number of frameworks describe the possible contents of a K–12 artificial intelligence (AI) curriculum and suggest possible learning activities (for example, see the UNESCO competency framework for students, 2024). In our March seminar, Lukas Höper and Carsten Schulte from the Department of Computing Education at Paderborn University in Germany shared with us a unit of work they’ve developed that could inform such a curriculum. At its core, the unit enhances young people’s awareness of how their personal data is used in the data-driven technologies that form part of their everyday lives.

Lukas Höper and Carsten Schulte are part of a larger team who are investigating how to teach school students about data science and Big Data.

Carsten explained that Germany’s informatics (computing) curriculum includes a competency area known as Informatics, People and Society (IPS), which explores the interrelationships between technology, individuals, and society, and how computation influences and is influenced by social, ethical, and cultural factors. However, research has suggested that teachers face several problems in delivering this topic, including:

  • Lack of subject knowledge 
  • Lack of teaching material
  • Lack of integration with other topics in informatics lessons
  • A perception that IPS is the responsibility of other subjects

Some of the findings of that 2007 research were mirrored in a more recent local study in 2025, which found that although there have been some gains in subject knowledge in the interval period, the problems of a lack of teaching material and integration with other computer science (CS) topics persist, with IPS increasingly perceived as the responsibility of the informatics subject area alone. Despite this, within the informatics curriculum, IPS is often the first topic to be dropped when educators face time constraints — and concerns with what and how to assess the topic remain. 

Photo focused on a young person working on a computer in a classroom.

In this context, and as part of a larger, longitudinal project to promote data science teaching in schools called ProDaBi, Carsten and Lukas have been developing, implementing, and evaluating concepts and materials on the topics of data science and AI. Lukas explained the importance of students developing data awareness in the context of the digital systems they use in their everyday lives, such as search engines, streaming services, social media apps, digital assistants, and chatbots, and emphasised the difference between being a user of these systems and a data-aware user. Using the example of image recognition and ‘I am not a robot’ Captcha services, Lukas explained how young people need to develop a data-aware perspective of the secondary purposes of the data collected by these (and other) systems, as well as the more obvious, primary purposes. 

Lukas went on to illustrate the human interaction system model, which presents a continuum of possible different roles, from the student as the user of digital artefacts to the student as the designer of digital artefacts. 

 Figure 1. Different roles in interactions with data-driven technologies
 Figure 1. Different roles in interactions with data-driven technologies

To become data-aware users of digital artefacts, students need to be able to understand and reflect on those digital artefacts. Only then can they proceed to become responsible designers of digital artefacts. However, when surveyed, some students were only moderately interested in engaging with the inner workings of the digital technologies they use in their everyday lives. Many students prefer to use the systems and are less interested in how they process data. 

The explanatory model approach in computing education

Lukas explained how students often become more interested in data-driven technologies when learning about them with explanatory models. Such models can foster data awareness, giving students a different perspective of data-driven technologies and helping them become more empowered users of them. 

To illustrate, Lukas gave the example of an explanatory model about the role of data in digital systems. Such a model can be used to introduce the idea that data is explicitly and implicitly collected in the interaction between the user and the technology, and used for primary and secondary purposes. 

The four parts of the explanatory model.
Figure 2. The four parts of the explanatory model

Lukas then introduced two teaching units that were developed for use with middle school children to evaluate the success of the explanatory model approach in computing education. The first unit explores location data collected by mobile phone networks and the second features recommendation systems used by movie streaming services such as Netflix and Amazon Prime.

Taking the second unit as their focus, Lukas and Carsten outlined the four parts of the explanatory model approach: 

Part 1

The teaching unit begins by introducing recommendation systems and asking students to think about what a streaming service is, how a personalised start page is constructed, and how personal recommendations might be generated. Students then complete an unplugged activity to simulate the process of making movie recommendations for a peer:

Task 1: Students write down movie recommendations for another student. 

Task 2: They then ask each other questions (they collect data). 

Task 3: They write down revised movie recommendations.

Task 4: They share and evaluate their recommendations.  

Task 5: Together they reflect on which collected data was helpful in this exercise and what kind of data a recommendation system might collect. This reflection introduces the concepts of explicit and implicit data collection. 

Part 2

In part 2, students are given a prepared Jupyter Notebook, which allows them to explore a simulation of a recommendation system. Students rate movies and receive personal recommendations. They reconstruct a data model about users, using the idea of collaborative filtering with the k-nearest neighbours algorithm (see Figure 3). 

Figure 3. Data model of movie ratings
Figure 3. Data model of movie ratings

Part 3

In part 3, the concepts of primary and secondary purposes for data collection are introduced. Students discuss examples of secondary purposes such as personalised paywalls for movies that can be purchased, and subscriptions based on the predictions of future behaviour. The discussion includes various topics about individual and societal issues (e.g. filter bubbles, behaviour engineering, information asymmetry, and responsible development of data-driven technologies). 

Part 4

Finally, students use the explanatory model as an ‘analytical lens’. They choose other examples from their everyday lives of technologies that implement recommendation systems and analyse these examples, assessing the data practices involved. Students present their results in class and discuss their role in these situations and possible actions they can take to become more empowered, data-aware users.

Uses of explanatory models

Using the explanatory model is one approach to make the Informatics, People and Society strand of the German informatics curriculum more engaging for students, and addresses some of the problems teachers identify with delivering this competency area. 

In presenting the idea of the explanatory model, Carsten and Lukas emphasised that the model in use delivers content as well as functioning as a tool to design teaching content. In the example above, we see how the explanatory model introduces the concepts of:

  1. Explicit and implicit data collection
  2. Primary and secondary purposes of that data 
  3. Data models 

The explanatory model framework can also be used as a focus for academic research in computing education. For example, further research is needed to evaluate if explanatory models are appropriate or ‘correct’ models and to determine the extent to which they are useful in computing education. 

In summary, an explanatory model provides a specific perspective on and explanation of particular computing concepts and digital artefacts. In the example given here, the model focuses on the role of data in a recommender system. Explanatory models are representations of concepts, artefacts, and socio-technical systems, but can also serve as tools to support teaching and learning processes and research in computing education. 

Figure 4. Overview of the perspectives of explanatory models
Figure 4. Overview of the perspectives of explanatory models. Click to enlarge.

The teaching units referred to above are published on www.prodabi.de (in German and English). 

See the background paper to the seminar, called ‘Learning an explanatory model of data-driven technologies can lead to empowered behaviour: A mixed-methods study in K-12 Computing education’.

You can also view the paper describing the development of the explanatory model approach, called ‘New perspectives on the future of Computing education: Teaching and learning explanatory models’.

Join our next seminar

In our current seminar series, we’re exploring teaching about AI and data science. Join us at our next seminar on Tuesday 13 May at 17:00–18:30 BST to hear Henriikka Vartiainen and Matti Tedre (University of Eastern Finland) discuss how to empower students by teaching them how to develop AI and machine learning (ML) apps without code in the classroom.

To sign up and take part in our research seminars, click below:

You can also view the schedule of our upcoming seminars, and catch up on past seminars on our previous seminars and recordings page.

The post Research insights to help learners develop data awareness appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/research-insights-to-help-learners-develop-data-awareness/feed/ 0
New resource to help teachers make Computing culturally relevant https://www.raspberrypi.org/blog/new-resource-to-help-teachers-make-computing-culturally-relevant/ Tue, 02 Apr 2024 09:59:37 +0000 https://www.raspberrypi.org/?p=86709 Here at the Raspberry Pi Foundation, we believe that it’s important that our academic research has a practical application. An important area of research we are engaged in is broadening participation in computing education by investigating how the subject can be made more culturally relevant — we have published several studies in this area.  However,…

The post New resource to help teachers make Computing culturally relevant appeared first on Raspberry Pi Foundation.

]]>
Here at the Raspberry Pi Foundation, we believe that it’s important that our academic research has a practical application. An important area of research we are engaged in is broadening participation in computing education by investigating how the subject can be made more culturally relevant — we have published several studies in this area. 

Licensed under the Open Government Licence.

However, we know that busy teachers do not have time to keep abreast of all the latest research. This is where our Pedagogy Quick Reads come in. They show teachers how an area of current research either has been or could be applied in practice. 

Our new Pedagogy Quick Read summarises the central tenets of culturally relevant pedagogy (the theory) and then lays out 10 areas of opportunity as concrete ways for you to put the theory into practice.

Why is culturally relevant pedagogy necessary?

Computing remains an area where many groups of people are underrepresented, including those marginalised because of their gender, ethnicity, socio-economic background, additional educational needs, or age. For example, recent stats in the BCS’ Annual Diversity Report 2023 record that in the UK, the proportion of women working in tech was 20% in 2021, and Black women made up only 0.7% of tech specialists. Beyond gender and ethnicity, pupils who have fewer social and economic opportunities ‘don’t see Computing as a subject for somebody like them’, a recent report from Teach First found. 

In a computing classroom, a girl laughs at what she sees on the screen.

The fact that in the UK, 94% of girls and 79% of boys drop Computing at age 14 should be of particular concern for Computing educators. This last statistic makes it painfully clear that there is much work to be done to broaden the appeal of Computing in schools. One approach to make the subject more inclusive and attractive to young people is to make it more culturally relevant. 

As part of our research to help teachers effectively adapt their curriculum materials to make them culturally relevant and engaging for their learners, we’ve identified 10 areas of opportunity — areas where teachers can choose to take actions to bring the latest research on culturally relevant pedagogy into their classrooms, right here, right now. 

Applying the areas of opportunity in your classroom

The Pedagogy Quick Read gives teachers ideas for how they can use the areas of opportunity (AOs) to begin to review their own curriculum, teaching materials, and practices. We recommend picking one area initially, and focusing on that perhaps for a term. This helps you avoid being overwhelmed, and is particularly useful if you are trying to reach a particular group, for example, Year 9 girls, or low-attaining boys, or learners who lack confidence or motivation. 

Two learners do physical computing in the primary school classroom.

For example, one simple intervention is AO1 ‘Finding out more about our learners’. It’s all too easy for teachers to assume that they know what their students’ interests are. And getting to know your students can be especially tricky at secondary level, when teachers might only see a class once a fortnight or in a carousel. 

However, finding out about your learners can be easily achieved in an online survey homework task, set at the beginning of a new academic year or term or unit of work. Using their interests, along with considerations of their backgrounds, families, and identities as inputs in curriculum planning can have tangible benefits: students may begin to feel an increased sense of belonging when they see their interests or identities reflected in the material later used. 

How we’re using the AOs

The Quick Read presents two practical case studies of how we’ve used the 10 AO to adapt and assess different lesson materials to increase their relevance for learners. 

Case study 1: Teachers in UK primary school adapt resources

As we’ve shared before, we implemented culturally relevant pedagogy as part of UK primary school teachers’ professional development in a recent research project. The Quick Read provides details of how we supported teachers to use the AOs to adapt teaching material to make it more culturally relevant to learners in their own contexts. Links to the resources used to review 2 units of work, lesson by lesson, to adapt tasks, learning material, and outcomes are included in the Quick Read. 

A table laying out the process of adapting a computing lesson so it's culturally relevant.
Extract from the booklet used in a teacher professional development workshop to frame possible adaptations to lesson activities.

Case study 2: Reflecting on the adaption of resources for a vocational course for young adults in a Kenyan refugee camp

In a different project, we used the AOs to reflect on our adaptation of classroom materials from The Computing Curriculum, which we had designed for schools in England originally. Partnering with Amala Education, we adapted Computing Curriculum materials to create a 100-hour course for young adults at Kakuma refugee camp in Kenya who wanted to develop vocational digital literacy skills. 

The diagram below shows our ratings of the importance of applying each AO while adapting materials for this particular context. In this case, the most important areas for making adaptations were to make the context more culturally relevant, and to improve the materials’ accessibility in terms of readability and output formats (text, animation, video, etc.). 

Importance of the areas of opportunity to a course adaptation.

You can use this method of reflection as a way to evaluate your progress in addressing different AOs in a unit of work, across the materials for a whole year group, or even for your school’s whole approach. This may be useful for highlighting those areas which have, perhaps, been overlooked. 

Applying research to practice with the AOs

The ‘Areas of opportunity’ Pedagogy Quick Read aims to help teachers apply research to their practice by summarising current research and giving practical examples of evidence-based teaching interventions and resources they can use.

Two children code on laptops while an adult supports them.

The set of AOs was developed as part of a wider research project, and each one is itself research-informed. The Quick Read includes references to that research for everyone who wants to know more about culturally relevant pedagogy. This supporting evidence will be useful to teachers who want to address the topic of culturally relevant pedagogy with senior or subject leaders in their school, who often need to know that new initiatives are evidence-based.

Our goal for the Quick Read is to raise awareness of tried and tested pedagogies that increase accessibility and broaden the appeal of Computing education, so that all of our students can develop a sense of belonging and enjoyment of Computing.

Let us know if you have a story to tell about how you have applied one of the areas of opportunity in your classroom.

To date, our research in the field of culturally relevant pedagogy has been generously supported by funders including Cognizant and Google. We are very grateful to our partners for enabling us to learn more about how to make computing education inclusive for all.

The post New resource to help teachers make Computing culturally relevant appeared first on Raspberry Pi Foundation.

]]>
Engaging primary Computing teachers in culturally relevant pedagogy through professional development https://www.raspberrypi.org/blog/culturally-relevant-pedagogy-areas-opportunity-adapting-lessons/ Tue, 05 Dec 2023 11:03:41 +0000 https://www.raspberrypi.org/?p=85766 Underrepresentation in computing is a widely known issue, in industry and in education. To cite some statistics from the UK: a Black British Voices report from August 2023 noted that 95% of respondents believe the UK curriculum neglects black lives and experiences; fewer students from working class backgrounds study GCSE Computer Science; when they leave…

The post Engaging primary Computing teachers in culturally relevant pedagogy through professional development appeared first on Raspberry Pi Foundation.

]]>
Underrepresentation in computing is a widely known issue, in industry and in education. To cite some statistics from the UK: a Black British Voices report from August 2023 noted that 95% of respondents believe the UK curriculum neglects black lives and experiences; fewer students from working class backgrounds study GCSE Computer Science; when they leave formal education, fewer female, BAME, and white working class people are employed in the field of computer science (Kemp 2021); only 21% of GCSE Computer Science students, 15% at A level, and 22% at undergraduate level are female (JCQ 2020, Ofqual 2020, UCAS 2020); students with additional needs are also underrepresented.

In a computing classroom, two girls concentrate on their programming task.

Such statistics have been the status quo for too long. Many Computing teachers already endeavour to bring about positive change where they can and engage learners by including their interests in the lessons they deliver, so how can we support them to do this more effectively? Extending the reach of computing so that it is accessible to all also means that we need to consider what formal and informal values predominate in the field of computing. What is the ‘hidden’ curriculum in computing that might be excluding some learners? Who is and who isn’t represented?

Katharine Childs.
Katharine Childs (Raspberry Pi Foundation)

In a recent research seminar, Katharine Childs from our team outlined a research project we conducted, which included a professional development workshop to increase primary teachers’ awareness of and confidence in culturally relevant pedagogy. In the workshop, teachers considered how to effectively adapt curriculum materials to make them culturally relevant and engaging for the learners in their classrooms. Katharine described the practical steps teachers took to adapt two graphics-related units, and invited seminar participants to apply their learning to a graphics activity themselves.

What is culturally relevant pedagogy?

Culturally relevant pedagogy is a teaching framework which values students’ identities, backgrounds, knowledge, and ways of learning. By drawing on students’ own interests, experiences and cultural knowledge educators can increase the likelihood that the curriculum they deliver is more relevant, engaging and accessible to all.

The idea of culturally relevant pedagogy was first introduced in the US in the 1990s by African-American academic Gloria Ladson-Billings (Ladson-Billings 1995). Its aim was threefold: to raise students’ academic achievement, to develop students’ cultural competence and to promote students’ critical consciousness. The idea of culturally responsive teaching was later advanced by Geneva Gay (2000) and more recently  brought into focus in US computer science education by Kimberly Scott and colleagues (2015). The approach has been localised for England by Hayley Leonard and Sue Sentance (2021) in work they undertook here at the Foundation.

Ten areas of opportunity

Katharine began her presentation by explaining that the professional development workshop in the Primary culturally adapted resources for computing project built on two of our previous research projects to develop guidelines for culturally relevant and responsive computing and understand how teachers used them in practice. This third project ran as a pilot study funded by Cognizant, starting in Autumn 2022 with a one-day, in-person workshop for 13 primary computing teachers.

The research structure was a workshop followed by research adaption, then delivery of resources, and evaluation through a parent survey, teacher interviews, and student focus groups.

Katharine then introduced us to the 10 areas of opportunity (AO) our research at the Raspberry Pi Computing Education Research Centre had identified for culturally relevant pedagogy. These 10 areas were used as practical prompts to frame the workshop discussions:

  1. Find out about learners
  2. Find out about ourselves as teachers
  3. Review the content
  4. Review the context
  5. Make the learning accessible to all
  6. Provide opportunities for open-ended and problem solving activities
  7. Promote collaboration and structured group discussion
  8. Promote student agency through choice
  9. Review the learning environment
  10. Review related policies, processes, and training in your school and department

At first glance it is easy to think that you do most of those things already, or to disregard some items as irrelevant to the computing curriculum. What would your own cultural identity (see AO2) have to do with computing, you might wonder. But taking a less complacent perspective might lead you to consider all the different facets that make up your identity and then to think about the same for the students you teach. You may discover that there are many areas which you have left untapped in your lesson planning.

Two young people learning together at a laptop.

Katharine explained how this is where the professional development workshop showed itself as beneficial for the participants. It gave teachers the opportunity to reflect on how their cultural identity impacted on their teaching practices — as a starting point to learning more about other aspects of the culturally relevant pedagogy approach.

Our researchers were interested in how they could work alongside teachers to adapt two computing units to make them more culturally relevant for teachers’ specific contexts. They used the Computing Curriculum units on Photo Editing (Year 4) and Vector Graphics (Year 5).

A slide about adapting an emoji teaching activity to make it culturally relevant.

Katharine illustrated some of the adaptations teachers and researchers working together had made to the emoji activity above, and which areas of opportunity (AO) had been addressed; this aspect of the research will be reported in later publications.

Results after the workshop

Although the number of participants in this pilot study was small, the findings show that the professional development workshop significantly increased teachers’ awareness of culturally relevant pedagogy and their confidence in adapting resources to take account of local contexts:

  • After the workshop, 10/13 teachers felt more confident to adapt resources to be culturally relevant for their own contexts, and 8/13 felt more confident in adapting resources for others.
  • Before the workshop, 5/13 teachers strongly agreed that it was an important part of being a computing teacher to examine one’s own attitudes and beliefs about race, gender, disabilities, sexual orientation. After the workshop, the number in agreement rose to 12/13.
  • After the workshop, 13/13 strongly agreed that part of a computing teacher’s responsibility is to challenge teaching practices which maintain social inequities (compared to 7/13 previously).
  • Before the workshop, 4/13 teachers strongly agreed that it is important to allow student choice when designing computing activities; this increased to 9/13 after the workshop.

These quantitative shifts in perspective indicate a positive effect of the professional development pilot. 

Katharine described that in our qualitative interviews with the participating teachers, they expressed feeling that their understanding of culturally relevant pedagogy had increased and they recognized the many benefits to learners of the approach. They valued the opportunity to discuss their contexts and to adapt materials they currently used with other teachers, because it made it a more ‘authentic’ and practical professional development experience.

The seminar ended with breakout sessions inviting viewers to consider possible adaptations that could be made to the graphics activities which had been the focus of the workshop.

In the breakout sessions, attendees also discussed specific examples of culturally relevant teaching practices that had been successful in their own classrooms, and they considered how schools and computing educational initiatives could support teachers in their efforts to integrate culturally relevant pedagogy into their practice. Some attendees observed that it was not always possible to change schemes of work without a ‘whole-school’ approach, senior leadership team support, and commitment to a research-based professional development programme.

Where do you see opportunities for your teaching?

The seminar reminds us that the education system is not culture neutral and that teachers generally transmit the dominant culture (which may be very different from their students’) in their settings (Vrieler et al, 2022). Culturally relevant pedagogy is an attempt to address the inequities and biases that exist, which result in many students feeling marginalised, disenfranchised, or underachieving. It urges us to incorporate learners’ cultures and experiences in our endeavours  to create a more inclusive computing curriculum; to adopt an intersectional lens so that all can thrive.

Secondary school age learners in a computing classroom.

As a pilot study, the workshop was offered to a small cohort of 13, yet the findings show that the intervention significantly increased participants’ awareness of culturally relevant pedagogy and their confidence in adapting resources to take account of local contexts.

Of course there are many ways in which teachers already adapt resources to make them interesting and accessible to their pupils. Further examples of the sort of adaptations you might make using these areas of opportunity include:

  • AO1: You could find out to what extent learners feel like they ‘belong’ or are included in a particular computing-related career. This is sure to yield valuable insights into learners’ knowledge and/or preconceptions of computing-related careers. 
  • AO3: You could introduce topics such as the ethics of AI, data bias, investigations of accessibility and user interface design. 
  • AO4: You might change the context of a unit of work on the use of conditional statements in programming, from creating a quiz about ‘Vikings’ to focus on, for example, aspects of youth culture which are more engaging to some learners such as football or computer games, or to focus on religious celebrations, which may be more meaningful to others.
  • AO5: You could experiment with a particular pedagogical approach to maximise the accessibility of a unit of work. For example, you could structure a programming unit by using the PRIMM model, or follow the Universal Design for Learning framework to differentiate for diversity.
  • AO6/7: You could offer more open-ended and collaborative activities once in a while, to promote engagement and to allow learners to express themselves autonomously.
  • AO8: By allowing learners to choose topics which are relevant or familiar to their individual contexts and identities, you can increase their feeling of agency. 
  • AO9: You could review both your learning materials and your classroom to ensure that all your students are fully represented.
  • AO10: You can bring colleagues on board too; the whole enterprise of embedding culturally relevant pedagogy will be more successful when school- as well as department-level policies are reviewed and prioritised.

Can you see an opportunity for integrating culturally relevant pedagogy in your classroom? We would love to hear about examples of culturally relevant teaching practices that you have found successful. Let us know your thoughts or questions in the comments below.

You can watch Katharine’s seminar here:

You can download her presentation slides on our ‘previous seminars’ page, and you can read her research paper.

To get a practical overview of culturally relevant pedagogy, read our 2-page Quick Read on the topic and download the guidelines we created with a group of teachers and academic specialists.

Tomorrow we’ll be sharing a blog about how the learners who engaged with the culturally adapted units found the experience, and how it affected their views of computing. Follow us on social media to not miss it!

Join our upcoming seminars live

On 12 December we’ll host the last seminar session in our series on primary (K-5) computing. Anaclara Gerosa will share her work on how to design and structure early computing activities that promote and scaffold students’ conceptual understanding. As always, the seminar is free and takes place online at 17:00–18:30 GMT / 12:00–13:30 ET / 9:00–10:30 PT / 18:00–19:30 CET. Sign up and we’ll send you the link to join on the day.

In 2024, our new seminar series will be about teaching and learning programming, with and without AI tools. If you’re signed up to our seminars, you’ll receive the link to join every monthly seminar.

The post Engaging primary Computing teachers in culturally relevant pedagogy through professional development appeared first on Raspberry Pi Foundation.

]]>