

Designing multimodal composition activities for integrated K-5 programming and storytelling

Dr Robert (Bobby) Whyte

Find me on Twitter: @bobbywhyteUK

Overview

Introduction Research context

Rationale of study

Intervention design

Method Design methodology

Data analysis

Findings Study 1

Study 2

Discussion Conclusions (and a caution!)

Postscript

Research context

2008 2013

2015 2017

COMPUTING AT SCHOOL

EDUCATE · ENGAGE · ENCOURAGE In collaboration with BCS, The Chartered Institute for IT

(Department for Education, 2013)

(The Royal Society, 2017)

Rationale

"... computing education across the UK is patchy and fragile (The Royal Society, 2017)

"...teachers have acted as gatekeepers to block a curriculum that they view as narrow, difficult to teach and in conflict with their beliefs and practices as educational professionals."

(Larke, 2019)

Rationale

"The core of computing is computer science... the principles of information and computation [variables, loops, conditionals, parallelism, operators, and data handling]... and put this knowledge to use through programming." (Department for Education, 2013)

"When will we use this in our lives?" (Tissenbaum et al., 2019)

Rationale

(Peppler, 2013; Benton et al., 2017; Burke and Kafai, 2010)

Integration of computing with literacy

- Stimulate interest in computational activities (Pinkard et. al, 2017)
- Promote female participation (Kelleher and Pausch, 2007)
- Visual programming tools provide a visual narrative representation (Robertson and Good, 2005)
- Storytelling-based approaches are contested (Adams and Webster, 2012)
- "Literacy... benefited the least from learning to program" (Scherer et al., 2018)

Multimodal composition (MMC)

Let's see what's behind that door," Harry called. The door creaked open. A deadly basilisk appeared.

"Expelliarmus!"

The Philosopher's Stone fell from its grip and into Harry's arms.

Multimodal composition

Definition

"A composition that employs a variety of modes, including sound, writing, image, and gesture/movement... [with] a communicative function"

(McGrail and Behizadeh, 2017)

Considerations

- The choice of representation
- The combination of representations
- The sequencing of representations
- 'Reader' effect (Bearne and Reedy, 2016)

Multimodal composition

(Bearne and Reedy, 2016)

Methodology

Design-based research (DBR) (Cobb et al., 2003)

- Multiple cycles of iteration
- Investigating theory in practice
- Embedded in real-world settings

Methodology

Teacher interviews + CSED literature

Design principles +
Teaching materials
(curriculum unit: learning
activities, lesson plans,
scaffolding materials)

Facilitating classroom interventions + evaluation of design

Research process

Pilot study: Piloting curriculum design

- Facilitating lessons
- Collecting process data
- Interviewing students and teachers

Study 1: Investigating the value of MMC

- Testing the curriculum design
- Trialing scaffolding materials
- Testing

Study 2: Adapting the curriculum for regular classroom instruction

- Curriculum co-design w/ teachers
- Classroom observations
- Developing teacher resources

Study 1

Research design — Study 1

Aim How can multimodal composition activities be designed

to support K-5 programming and storytelling practices?

Location Inner-city primary school, England

Participants 10 participants (9-11 y/o)

Intervention 6 weeks, 1hr weekly sessions (after school)

Data collected Screen capture videos, audio transcripts,

Observation notes, participants' projects

Intervention design

- Adapted one unit from the <u>Creative Computing</u>
 <u>Curriculum</u> (Creating Computing Lab)
- Characters -> conversations -> scenes

(Balch et al., 2014)

Intervention design

Intervention design

#	MMC activities	Storytelling	Programming
1	Decide on representation and content for specific purposes	Define narrative goal and decide on representations	Initialise sprites and write sequences
2	Structure texts	Maintain story cohesion through cohesive devices	Manage execution and coordination through event-
3		CONCOIVE GEVICES	based programming
4	Use technical features for effect	Use technical features for specific effects (e.g. narrative	Use programming features to animate sprites and create
5	enect	tension, to engage the audience)	motion
6	Program an original multimodal story	Create a narrative text and employ multimodal features for effect	Use a variety of programming concepts and practices to create a multimodal story, using more sophisticated programming features for narrative effect

(Bearne and Reedy, 2016; Balch et al., 2014)

- Challenge of simultaneously assessing student work as programming and storytelling
- Inspired by work in the learning sciences (esp. mathematics education) in hypothetical learning trajectories (Simon, 1995) and conjecture mapping (Sandoval, 2004)
- Adapted task-oriented analysis... or analyses (Dierdorp et al, 2011)

Activity A: Creating an introduction to a story

#	Task	Result
1	Introduction characters (appearance)	12/12
2	Provide character details (behaviours, background information)	10/12
3	Establish setting	9/12
4	Illustrate narrative events using dialogue	4/12
5	Illustrate narrative events using exposition (e.g. a narrator)	9/12

(Adapted from Dierdorp et al., 2011)

Activity A	1	2	3	4	5	6	7	8
Result	1/12	5/12	7/12	5/12	10/12	5/12	2/12	7/12

(Adapted from Dierdorp et al., 2011)

Activity A	1	2	3	4	5	6	7	8
Storytelling	1/12	5/12	7/12	5/12	10/12	5/12	2/12	7/12
Programming	2/12	5/12	5/12	3/12	11/12	5/12	3/12	8/12

(Adapted from Dierdorp et al., 2011)

Storytelling	Programming	
Sequence story events for cohesion	Use wait block(s) to sequence narrative correctly	
Organica langer compositions using structural devices	Use broadcast message(s) to coordinate multiple processes	
Organise longer compositions using structural devices	Use initialising block(s) (e.g. when blocks)	

Student projects

- Rich examples of student-led projects
- Use of popular books (Harry Potter, Diary of A Wimpy Kid) and media (Minecraft, Battle Royale)

MMC as storytelling

- Multiple representations used for specific purpose (10/10)
- Structure texts with eventbased blocks (10/10)
- Use of motion/animation (7/10)
- Reflect on MM choices (9/10)

MMC as programming

- Reset objects for multiple program execution (9/10)
- Event-based programming features (10/10)
- Loop functions (6/10) to simulate motion and animate characters

Task-oriented analysis

MMC subtasks	Conjecture (storytelling)	#	Conjecture (programming)	#
Decide on	Define narrative goal	10	Define program goal	10
representation and content for	Select appropriate representations to express story elements (e.g. images or words for characters or dialogue)	10	Employ one or more backdrops/sprites	10
specific purpose and	Adapt content to suit personal intentions or narrative goal	9	Execute two independent sprites concurrently	10
audience	Use multimodal features to engage and hold a 'reader's' attention	9	Manipulate elements to personalise characters/objects/setting	9
Structure texts	Integrate and balance representational resources for narrative purposes	10	Use an initialising block (e.g. green flag)	10
	Vary background detail to create changes in setting	10	Define initial sprite state using show/hide block(s)	10
	Use structural devices to ensure cohesion (e.g. when blocks)	9	Use event-based block(s) to manage program execution	10
	Use structural devices to organise longer compositions (e.g. broadcast messages)	5	Use broadcast scripts to coordinate multiple processes	5
Use technical features for	Illustrate action/movement using multimodal features	10	Use motion-based blocks (e.g. glide) to simulate movement	10
effect	Use layout and sprite organisation for narrative effect	10	Use switch costume/backdrop block(s)	10
	Use technical features to enhance meaning		Employ loops to animate sprites	6
Reflect	Check narrative cohesion	8	Ensure program output is consistent	10
	With support, redesigns text for clarity or cohesion	10	Debugs program errors	9

Design modifications

- ☐ Embed meaningful examples in activities
- ☐ Additional instructional supports

- \rightarrow
- □ Provide additional examples of loop applications
- ✓ Explicit instruction on storytelling
- ✓ Explicit instruction on broadcast messaging

(Whyte et al., 2020)

Study 2

Research design — Study 2

Aim How can multimodal composition activities designed

to support K-5 programming and storytelling be

adapted to support regular classroom instruction?

Location Inner-city primary school, England

Participants 28 student participants (9-10 y/o), 1 teacher (coordinator)

Intervention 2 weeks, 1hr daily sessions (during schooltime)

Data collected Audio transcripts, observation notes,

participants' projects, interview data

Areas of focus	Responses
Participant experience (students and teacher)	"I enjoyed thinking of things that have affected my practice"
Perceived enhancing or inhibiting factors or strategies	"Time is critical [] otherwise it won't be usable."
Intervention adaptation and future use	"[I wanted] the lessons [separated] so that I teach one computer lesson and then a literacy lesson [] "

(Tracy, 2012)

Teacher and student experiences

- Students appreciated a longer multi-session project
- Classroom teacher satisfied with the project work completed/skills practices (review of task-oriented analyses)
- Teacher required resources and planning to be made available and explicit ("I needed you to turn up [with] all the resources and planning [...] and I'll be able to just deliver it")

Perceived enhancing or inhibiting factors

- Confidence in teaching programming was a factor ("I don't see myself as a coder")
- Challenge of differentiation in computing ("[It's hard]
 differentiating for how much access they've had")
- School expectations and high standards meant that the lesson was perceived as being Literacy-lite ("Would they see this as a "wasted" literacy lesson?")

Intervention adaptation and future use

- Challenge working with <u>MMC</u> texts needed additional teacher guidance on modelling texts
- Intended to <u>separate</u> computing and literacy activities in future lessons
- Proposed making open-ended projects more <u>prescriptive</u> to limit time spent troubleshooting student projects/concerned over ability to do so

Conclusion

- MMC provided multiple opportunities for learners to mutually pursue storytelling and programming goals
- Curriculum unit proved feasible and adaptable for teachers to integrate into classroom practice
- Cross-curricular integration projects require that the affordances/trade-offs of bringing together different content areas are carefully considered

Postscript

NEW animated text features in Scratch Labs (here)

Designing multimodal composition activities for integrated K-5 programming and storytelling

Dr Robert (Bobby) Whyte

Find me on Twitter: @bobbywhyteUK